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Abstract: This paper describes a modification of the self-calibrating method for 
generating equally likely realizations (conditional simulations) of the 
transmissivity field, that honour measurements of transmissivity and 
dependent variables (heads, concentrations, etc.). Soft data (e. g. geophysics) 
can also be included in the conditioning procedure as a external drift. 
Moreover, spatial variability patterns of the “real” field (as observed through 
field or lab experiments) are respected. The results of the algorithm are 
compared with those obtained by the most commonly used methods in 
groundwater, such as zonation and pilot points (conditional estimation 
methods). The performance of these geostatistical inverse approaches was 
compared on a synthetic data set, where the outcome is based on qualitative 
(resemblance between the obtained transmissivity fields and the ‘real’ one) 
and quantitative criteria (goodness of fit between computed and measured 
heads). Results show that the inclusion of head data in the conditioning 
procedure provides a better solution than the one obtained including only 
transmissivity data. Final comparison (simulations/estimations conditioned to 
both type of data) shows similar results. The choice of the best method 
depends on whether the modeller seeks small-scale variability (conditional 

simulation methods) or large-scale trends (conditional estimation methods). 

1. INTRODUCTION 

For many environmental applications, such as the selection of a waste 
disposal site, aquifer management or aquifer remediation, a good 
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characterization of the aquifer properties is absolutely necessary. The 
heterogeneity of some of these properties is known to control the aquifer 
response. For instance, it is well known that the heterogeneity of the 
transmissivity field has a large impact on solute or gas transport through the 
geosphere. The representation of aquifer behaviour is, in a wide sense, 
referred to as numerical modelling.    

The main objective of numerical modelling is to obtain a representation 
of the aquifer that 1) honour all available data, such as point transmissivity, 
heads and concentration measurements, geological/geophysical information, 
etc. and 2) respect spatial variability patterns as observed through field or lab 
experiments. For this purpose, geostatistical inversion approaches are ideally 
suited, and they can be classified in two groups: conditional estimation and 
conditional simulation methods. While the latter provides the ‘best’ estimate 
of the unknown field, the outcome of the former is a set of equally likely 
realizations that honour all available data. 

Several approaches can be found in each one of the groups. Zonation 
(Carrera and Neuman, 1986), kriging and pilot points method (Certes and 
de Marsily, 1991) are the most frequent among those of conditional 
estimation. Among others, self-calibrating method (Gómez-Hernández et al., 
1997), Linearized Cokriging (Kitanidis and Vomvoris, 1983), Linearized 
Semianalytical (Rubin and Dagan, 1987), are included in the group of 
conditional simulation methods.  

A good review of geostatistical inverse approaches is McLaughlin and 
Townley (1996). In that paper, a common theoretical framework and a 
theoretical comparison are presented. However, the major attempt to 
compare them numerically was given by Zimmerman et al. (1998). 

In this work we present a modification of the self-calibrating method, 
with especial emphasis in the algorithm, as well as a numerical comparison 
on a synthetic example with methods of zonation, pilot points and kriging.  

2. PARAMETERIZATION METHODS 

Inverse procedures need to describe the spatial and temporal variability 
of unknown parameters, which is referred to as parameterization. We present 
here a brief description of the parameterization methods used in this paper. 
For further information, we address the reader to reviews such as Carrera 
(1987), Yeh (1986). Linear parameterizations can be expressed as: 
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where pj are scalars called models parameters (unknowns) and fj ),( tx  are 
interpolation functions. Parameterization procedures differ according to 
these functions. The most commonly used in groundwater have been 
zonation (discretization) and pilot points, defined below. 
– Zonation: A partition is made on the system. In every partition’s zone, 

the function f j ),( tx  has a predefined variation or a constant value 
(Carrera and Neuman, 1986).  

– Pilot points method: The interpolation functions f j ),( tx  are defined as 
kriging coefficients and pj are the hypothetical parameters on a finite 
number of points, which are referred to as pilot points (de Marsily, 1978). 

3. SUGGESTED APPROACH 

The approach proposed here is a modification of the one by Gómez-
Hernández et al. (1997). Unknown parameter (log-transmissivity in this 
case) is defined as the superposition of two fields: a deterministic drift and 
an uncertain component. The deterministic part (Ydrift) can be obtained 
through conditional simulation or kriging, depending on whether one seeks 
small-scale variability or large-scale trends, and therefore reproduces hard 
data (i.e. transmissivity measurements) and soft data (i.e. geophysical data 
can be included as a external drift). The uncertain part can be seen as a 
perturbation, such that the final field also reproduces data related to 
dependent variables (heads, concentrations, etc.). To overcome stability 
problems, this perturbation field is expressed in terms of a finite number of 
unknown perturbations (DY)  a t  n points (similar to master locations at 
Gómez-Hernández work, but pilot points at de Marsily’s). Final expression 
of the parameterization for log10T field can be expressed as: 
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where li are interpolation weights, which, in this case, are obtained 
through kriging (seven variants were implemented: simple kriging, ordinary 
kriging, kriging with locally varying mean, kriging with external drift, 
simple cokriging, ordinary cokriging and standardized ordinary cokriging). 
Given that the deterministic drift honors parameter data, we seek to 
determine a perturbation field such that the final field also honors data 
related to dependent variables (heads, concentrations, etc.). Next section 
describes the methodology to obtain the optimal values of the unknown 
perturbations at the master locations. 
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4. INVERSION PROCEDURE 

The goal is to obtain optimal values of the perturbations such that the 
final field also honors dependent variable measurements. A common way to 
achieve it is to formulate the problem in terms of a ‘performance criterion’, 
expressing the difference between actual solution and what we know about 
the real system (measurements). This criterion is referred to as objective 
function and can be expressed as (only using head measurements): 
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where h* is the vector of all head measurements, h are the corresponding 
computed heads, DY is the vector of log10T perturbations at master points, 
DY* their prior estimates. Ch, CDY are the corresponding covariance matrices 
and lh, lDY are weighting coefficients. 

The set of unknown perturbations that minimizes (3) makes the final field 
to honor all available data. It should be noticed that conditioning is enforced 
strictly, given that transmissivity measurements are honored by the 
deterministic part Ydrift and perturbation is zero at those points. Posed in this 
way, inversion becomes an optimization problem, performed by Levenberg-
Marquardt’s method. 

One of the novelties is the inclusion of the plausibility term, accounting 
for the difference between prior and posterior estimations of transmissivity 
at the master points. Other works (e.g. Capilla et al., 1997) calibrate the 
model only bearing in mind head or concentration measurements, obtaining 
solutions providing a good fit between calculated and measured values, but 
do not assure plausibility of estimates. This is a very important issue. As 
demonstrated by Carrera and Neuman (1986b) the inclusion of this term 
(regularization term in that paper) improves the conditioning of the inverse 
problem.  

In our work, prior estimation of the perturbations at the master points are 
obtained through kriging, on the basis of transmissivity measurements. This 
formulation also improves the statistical consistency of the method. This 
issue will be discussed elsewhere. 

5. SYNTHETIC EXAMPLE 

In this section we present the comparison between 6 geostatistical inverse 
approaches, including the one proposed here. All of them were applied to a 
set of synthetic data, where the ‘real’ system was perfectly known a priori. 
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Flow domain is a square of 4000x4000 m2 area, where inflows are 
prescribed to be 0.1 m3/d at the left boundary and the head level was set to 0 
m at the right boundary. Upper and lower boundaries are supposed to be 
impervious. There are also two internal sinks of 3 m3/d in the middle part of 
the flow domain. (Figure 1) 

Log-transmissivity is considered as a random field with a zero mean and 
a spherical isotropic covariance function, with a variance of 4.0 and a range 
of 1000 m (1/4 of the domain length). For the purpose of the transmissivity 
estimation/simulation, the domain is divided into 1600 squared blocks of 
100x100 m2 area. 

Flow regime is transient with steady-state initial conditions; under steady 
conditions, no pump is assumed in the middle of the domain. Wells pump 
only during half part of the test. The storage coefficient was taken as 
constant and perfectly known, with a value of 10-5. 

This problem setup (see Figure 1) was considered as the model for the 
‘real’ system and was used to derive the conditioning measurements (head 
and log10T data) at 25 observation wells. 

 
For the application of the pilot points method and the proposed approach, 

a uniform grid was generated, using three master points per correlation 
range, as suggested by Gómez-Hernández et al. (1997). This leads to a total 
number of 144 master points, a number large enough to reproduce spatial 
variability patterns, but small enough considering computational effort. 

Six methods (summarized at Table 1) were applied to the set of synthetic 
data and evaluated both qualitatively (resemblance between the obtained 
transmissivity and head fields and the ‘real’ ones) and quantitatively, in 
terms of the errors in computed log-transmissivities. 
 
Table 1. Summary of methods applied to the set of synthetic data 

Group Conditioning data  Method Acronym 

log10T Suggested approach CS-T Conditional 
simulation log10T, h  Suggested approach CS-Th 

log10T, h Pilot points CETh-PP 

log10T Ordinary  Kriging CET-K 

log10T, h 
Kriging as drift + 
perturbation 

CETh-MP 

Conditional 
estimation 

log10T, h Zonation CETh-Z 
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Impervious 

 

 
 
 
 
 
 
 
 
 
 

Impervious 

 
Figure 1. Synthetic example setup. “Real” transmissivity field, boundary 

conditions and position of the measurement points (circles). 

 
An error vector ej was defined for each simulation ‘j’, (unique in the case 

of conditional estimation): 

e j
i
 = Y calc, j

i – Y true, j
i     i=1,Nb    j=1,NS (4) 

where Ycalc and Ytrue are the vector of calibrated and ‘real’ 
transmissivities of all blocks at simulation j. 
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where Ns is the number of conditional simulations and Nb is the number 
of transmissivity blocks (50 and 1600, respectively).  

The first criterion measures the estimation biases and should be close to 
zero. The second one measures the difference between the true field and the 
obtained one, and (Carrera and Glorioso, 1991) should be smaller than the 
field variance (4 in this case). The third one measures the quality of the fit 
between calculated and measured heads at the observation points.  
 

H = 0 m Q=0.1 m3/d 
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5.1 Visual comparison 

Consider Figure 2, displaying the results of one of the realizations 
obtained by the proposed method. Comparing maps at column 1, one can 
observe that the simulation conditioned to log10T data (b1) reproduces the 
large-scale patterns of the real field. However, there is still a large difference 
between the real field and the proposed one. This uncertainty can also be 
observed comparing maps (a2, ‘real’ heads) and (b2, predicted heads). 
Because head measurements were not included as conditioning data, 
measured heads do not have necessarily to be reproduced by the model, as 
shown at picture (b3). 

This difference is reduced by adding the perturbation field (the one being 
calibrated on the basis of head measurements). Final solution is presented on 
row (c). The reduction of the uncertainty of the initial drift (conditioned only 
to log10T data) can be observed in maps and pictures at row ‘c’. Final field 
also reproduces large-scale patterns and is more alike than the initial drift. 
Also, head measurements are reproduced.  

Figure 3 displays the results obtained by conditional estimation methods. 
The most important remark is that log10T fields are inherently smooth. 
However, large-scale spatial patterns of the ‘real’ field are also honored, 
even in the cases where only log10 T data were used. 

Considering rows (d) and (e) the similarity between true and calibrated 
fields is striking, if one seeks large-scale trends. Consider now map (c1), 
using pilot points method. One can see some singularities in the calibrated 
field, as measurements are fully respected. Row (e) displays the results 
obtained by the proposed method, using kriging as initial drift, jointly with 
the calibration of the perturbation field using the master points. This one 
does not present singularities on the final transmissivity map (e1), even 
though log10T measurements are also respected.  

Figure 4 displays a comparison between the average field of the 50 
conditional simulations and the one obtained through zonation.  As one can 
see, they are very similar. However, the average field is still sharp, probably 
because only 50 realizations were considered. 

5.2 Numerical comparison 

Table 2 displays the numerical aspects of the comparison. Considering 
mean error, all methods yielded similar results. Mean error was, in all cases, 
too high, but close to zero. So that, final solutions have a little bias. 
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(a1) Real field        (a2) 

 
 
 
 
 
 
 
 
 
 

(b1) CS-T case                                          (b2)                                              (b3) 

 
 
 
 
 
 
 
 
 

(c1) CS-Th case                                (c2)                                                (c3) 

 
 
 
 
 
 
 
 
 

Figure 2. Results concerning conditional simulations. Row (a): ‘real’ log10T field 
and ‘real’ head level field (steady-state). Row (b): conditional simulation to log10T 

data. Row (c): Final field obtained with the proposed method, with field (b1) as 
initial drift. Column 1: log10T maps. Column 2: head level map (steady state). 

Column 3: Plot of computed vs. measured head level. 
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(a1) Real field                                           (a2) 

 
 
 
 
 
 
 
 
 

(b1) CET-K case                                       (b2)                                              (b3) 

 
 
 
 
 
 
 
 
 

(c1) CETh-PP case                              (c2)                                               (c3) 

 
 
 
 
 
 
 
 
 
 

Figure 3a. Results concerning conditional estimation methods. Row (a): ‘real’ log10T field 
and ‘real’ head level field (steady-state). Row (b): conditional estimation to log10T data using 
ordinary kriging. Row (c): conditional estimation to log10T and head data using pilot points 

method. Column 1: log10T maps. Column 2: head level map (steady state). Column 3: Plot of 
computed vs. measured head level. 
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(d1) CETh-Z case                                    (d2)                                             (d3) 

 

 
 
 
 
 
 
 
 
 

(e1) CETh-KMP case                                  (e2)                                             (e3) 

 
 
 
 
 
 
 
 
 
 
Figure 3b. Results concerning conditional estimation methods. Row (d): conditional 
estimation to log10T and head data using the zonation approach. Row (e): conditional 

estimation to log10T and head data using the proposed method, using a kriged field as initial 
drift. Column 1: log10T maps. Column 2: head level map (steady state). Column 3: Plot of 

computed vs. measured head level. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4. Comparison between the average field obtained with 50 conditional simulations to 
transmissivity and head level data and the log10T map obtained through zonation  

(conditional estimation to log10T and head data). 

 
Considering mean deviation error, the suggested approach using kriging 

as initial drift displays a better behavior than the rest. All of the approaches 
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yielded a mean deviation error under the standard deviation of the real field, 
showing, in general, a good performance. 

The power of the suggested approach is shown considering head level fits 
(as calculated by Jh). In thirteen of the fifty conditional simulations, the 
suggested approach performed better than the zonation method, subjectively 
considered as the second best. Poor results of ordinary kriging are due to the 
fact of considering only log10T measurements as conditioning data. In 
general, to consider both types of measurements as conditioning data 
improves the quality of the final estimation. 

 
Table 2. Numerical comparison among the methods listed at Table 1. 

Method ME MDE Jh 
CSTh (average 50 simul.) 0.33 1.87 282 
Minimum CSTh 0.23 1.72 142 
Maximum CSTh 0.44 1.97 791 
CETh-KPP 0.10 1.53 206 
CETh-PP 0.30 1.65 193 
CET-OK 0.52 1.72 18200 
CETh-Z 0.34 1.61 188 

6. CONCLUSIONS 

A modification of the self-calibrating method for generating equally 
likely realizations (conditional simulations) of the transmissivity field is 
presented. Final solutions honor measurements of transmissivity and 
dependent variables (heads, concentrations, etc.). Soft data (e.g. geophysics) 
can also de included in the conditioning procedure as an external drift.  

Transmissivity field is defined as the superposition of a deterministic 
drift (obtained through kriging or conditional simulation), that honours 
log10T measurements   

and reproduces spatial variability of the field being simulated and an 
uncertain perturbation field. The latter is optimized such that the final field 
also honours dependent variables measurements (heads in this work, 
although other type of measurements can be included easily).  

Actual modifications consists of the addition of a penalty/regularization 
term in the objective function, considering plausibility of the model 
parameters, as well as the chance of using a kriged field as initial drift. 

The algorithm is compared with the most frequently used conditional 
estimation methods (ordinary kriging, zonation and pilot points) on a set of 
synthetic data. The comparison is evaluated qualitatively and numerically. 
Both conditional estimation and conditional simulation approaches yielded 
good reproductions of the real system. The choice of the most appropriate 
method is somewhat subjective. It depends on whether the modeler seeks 
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small-scale variability (conditional simulation) or large-scale trends 
(conditional estimation). However, single optimal estimate provided by 
conditional estimation should be used with caution for non-linear 
predictions. It is also (once more) corroborated that the inclusion of head 
measurements as conditioning data improves the quality (reduces the 
uncertainty) of the final estimation. 
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